login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A268888
Number of 3 X n binary arrays with some element plus some horizontally or antidiagonally adjacent neighbor totalling two exactly once.
1
0, 20, 84, 501, 2190, 9996, 42362, 178400, 732378, 2974934, 11933578, 47466417, 187325260, 734639334, 2865135348, 11121381104, 42989239524, 165564387000, 635557701344, 2432620417837, 9286486715514, 35366757558512, 134400104565934
OFFSET
1,2
LINKS
FORMULA
Empirical: a(n) = 3*a(n-1) + 12*a(n-2) - 16*a(n-3) - 62*a(n-4) - 34*a(n-5) + 16*a(n-6) + 12*a(n-7) - a(n-8) - a(n-9).
Empirical g.f.: x^2*(2 - x)*(10 + 17*x + 13*x^2 + 6*x^3 + 2*x^4) / ((1 + x)*(1 - 2*x - 6*x^2 + x^4)^2). - Colin Barker, Jan 15 2019
EXAMPLE
Some solutions for n=4:
..0..0..1..0. .0..0..0..0. .0..0..0..1. .0..0..0..0. .0..1..0..1
..1..0..0..0. .0..0..0..1. .1..1..0..1. .0..0..1..1. .0..0..0..1
..1..0..1..1. .1..1..0..0. .0..0..0..0. .1..0..0..1. .0..0..1..0
CROSSREFS
Row 3 of A268886.
Sequence in context: A172221 A006566 A205312 * A211158 A154077 A027849
KEYWORD
nonn
AUTHOR
R. H. Hardin, Feb 15 2016
STATUS
approved