%I #4 Feb 15 2016 11:31:39
%S 10,158,2190,27130,317966,3596174,39670270,429588382,4585939726,
%T 48401059362,506108414670,5251396681678,54134020936742,
%U 554930619106590,5661171443312270,57509255942550986,582036972222995470
%N Number of nX5 binary arrays with some element plus some horizontally or antidiagonally adjacent neighbor totalling two exactly once.
%C Column 5 of A268886.
%H R. H. Hardin, <a href="/A268883/b268883.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 26*a(n-1) -241*a(n-2) +994*a(n-3) -2060*a(n-4) +2218*a(n-5) -1201*a(n-6) +290*a(n-7) -25*a(n-8) for n>9
%e Some solutions for n=4
%e ..1..0..0..0..0. .1..0..0..0..1. .0..0..1..0..0. .0..1..0..1..0
%e ..1..0..0..1..0. .0..0..0..1..0. .1..0..0..1..0. .0..1..0..0..0
%e ..1..1..0..0..0. .0..1..0..0..0. .1..0..1..0..1. .0..0..0..1..0
%e ..0..0..1..0..1. .0..0..1..0..0. .1..0..0..0..1. .0..0..0..1..1
%Y Cf. A268886.
%K nonn
%O 1,1
%A _R. H. Hardin_, Feb 15 2016