Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Oct 11 2021 16:49:49
%S 7,26,63,124,215,342,511,1330,1727,2196,2743,3374,4095,7999,9260,
%T 10647,12166,13823,17575,19682,24388,26999,29790,32767,39303,42874,
%U 46655,54871,59318,63999,74087,79506,85183,91124,103822,110591,124999,132650,140607,148876
%N Cubefree numbers n such that n + 1 is a perfect cube.
%C Intersection of A004709 and A068601. - _Michel Marcus_, Feb 15 2016
%H K. D. Bajpai, <a href="/A268861/b268861.txt">Table of n, a(n) for n = 1..400</a>
%e a(2) = 26 = 2 * 13 that is cubefree. 26 + 1 = 27 = 3^3 (perfect cube).
%e a(4) = 124 = 2 * 2 * 31 that is cubefree. 124 + 1 = 125 = 5^3 (perfect cube).
%p cubefree:= proc(n) local t;
%p max(seq(t[2],t=ifactors(n)[2])) <= 2
%p end proc:
%p select(cubefree, [seq(i^3-1,i=2..100)]); # _Robert Israel_, Mar 03 2016
%t Select[Range[150000], FreeQ[FactorInteger[#], {_, k_ /; k > 2}] && IntegerQ[CubeRoot[# + 1]] &]
%t Select[Range[2,70]^3,Max[FactorInteger[#-1][[All,2]]]<3&]-1 (* _Harvey P. Dale_, Oct 11 2021 *)
%o (PARI) for(n=1, 1e5, f = factor(n)[, 2]; if((#f == 0) || vecmax(f) < 3, if(ispower(n + 1, 3), print1(n, ", "))));
%Y Cf. A004709, A068601, A121628, A221793, A268752.
%K nonn
%O 1,1
%A _K. D. Bajpai_, Feb 14 2016