%I
%S 1,6536413529,8167981106765263789,5426679072605204732028894233,
%T 2599293828638212400913690945686101111,
%U 1025794060996626005769021866749636185341527229,358281333933096129012031117609647623312585201668494007
%N Number of sequences with n copies each of 1,2,...,9 and longest increasing subsequence of length 9.
%H Alois P. Heinz, <a href="/A268845/b268845.txt">Table of n, a(n) for n = 1..50</a>
%H J. D. Horton and A. Kurn, Counting sequences with complete increasing subsequences, Congressus Numerantium, 33 (1981), 75-80. <a href="http://www.ams.org/mathscinet-getitem?mr=681905">MR 681905</a>
%F a(n) ~ 9^(9*n + 1/2) / (2*Pi*n)^4. - _Vaclav Kotesovec_, Mar 03 2016
%Y Column k=9 of A047909.
%K nonn
%O 1,2
%A _Alois P. Heinz_, Feb 14 2016
|