%I #4 Feb 13 2016 12:23:18
%S 5,48,302,1714,9085,46195,228384,1105510,5267662,24786180,115455033,
%T 533317129,2446323573,11154503019,50600348892,228514035985,
%U 1027932765869,4607917805325,20591918472965,91765529043193,407916504889146
%N Number of nX4 binary arrays with some element plus some horizontally, vertically or antidiagonally adjacent neighbor totalling two exactly once.
%C Column 4 of A268789.
%H R. H. Hardin, <a href="/A268785/b268785.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 2*a(n-1) +19*a(n-2) +10*a(n-3) -122*a(n-4) -320*a(n-5) -295*a(n-6) +8*a(n-7) +176*a(n-8) +20*a(n-9) -98*a(n-10) -6*a(n-11) +43*a(n-12) -6*a(n-13) -11*a(n-14) +6*a(n-15) -a(n-16)
%e Some solutions for n=4
%e ..0..0..1..0. .0..0..0..1. .1..0..0..1. .1..0..0..0. .0..1..0..0
%e ..0..0..0..0. .0..0..0..0. .0..0..0..0. .0..1..0..1. .0..0..0..1
%e ..1..0..0..0. .0..0..0..1. .1..0..0..1. .1..0..0..0. .0..1..0..0
%e ..1..0..0..0. .1..1..0..0. .0..0..0..1. .0..1..0..0. .1..0..0..1
%Y Cf. A268789.
%K nonn
%O 1,1
%A _R. H. Hardin_, Feb 13 2016