login
T(n,k)=Number of nXk 0..2 arrays with some element plus some horizontally, vertically, diagonally or antidiagonally adjacent neighbor totalling two exactly once.
8

%I #4 Feb 13 2016 08:28:28

%S 0,3,3,12,12,12,36,32,32,36,96,100,112,100,96,240,248,446,446,248,240,

%T 576,620,1524,2296,1524,620,576,1344,1456,5214,10340,10340,5214,1456,

%U 1344,3072,3380,17000,46312,64112,46312,17000,3380,3072,6912,7656,54822

%N T(n,k)=Number of nXk 0..2 arrays with some element plus some horizontally, vertically, diagonally or antidiagonally adjacent neighbor totalling two exactly once.

%C Table starts

%C ....0.....3.....12.......36........96.........240..........576..........1344

%C ....3....12.....32......100.......248.........620.........1456..........3380

%C ...12....32....112......446......1524........5214........17000.........54822

%C ...36...100....446.....2296.....10340.......46312.......198114........837848

%C ...96...248...1524....10340.....64112......387146......2258084......12951796

%C ..240...620...5214....46312....387146.....3104544.....24222418.....185142872

%C ..576..1456..17000...198114...2258084....24222418....255353744....2624246370

%C .1344..3380..54822...837848..12951796...185142872...2624246370...36091542548

%C .3072..7656.173244..3472210..73011192..1393319226..26623649020..491176316484

%C .6912.17148.541910.14245712.406925194.10357051740.266457432340.6585970939900

%H R. H. Hardin, <a href="/A268774/b268774.txt">Table of n, a(n) for n = 1..612</a>

%F Empirical for column k:

%F k=1: a(n) = 4*a(n-1) -4*a(n-2)

%F k=2: a(n) = 2*a(n-1) +3*a(n-2) -4*a(n-3) -4*a(n-4) for n>5

%F k=3: a(n) = 4*a(n-1) +2*a(n-2) -16*a(n-3) -a(n-4) +12*a(n-5) -4*a(n-6) for n>8

%F k=4: [order 8] for n>10

%F k=5: [order 12] for n>14

%F k=6: [order 16] for n>18

%F k=7: [order 28] for n>30

%e Some solutions for n=4 k=4

%e ..2..1..2..2. .1..2..2..2. .0..0..0..0. .0..1..0..1. .2..2..1..2

%e ..1..2..2..1. .2..2..2..1. .1..0..1..0. .0..0..0..1. .2..2..2..2

%e ..2..2..2..2. .2..1..2..2. .0..0..0..0. .0..0..0..0. .1..2..2..2

%e ..2..1..2..1. .1..2..2..2. .1..1..0..1. .0..0..0..1. .2..1..2..2

%Y Column 1 is A167667(n-1).

%K nonn,tabl

%O 1,2

%A _R. H. Hardin_, Feb 13 2016