%I
%S 96,248,1524,10340,64112,387146,2258084,12951796,73011192,406925194,
%T 2244513800,12281806624,66734787464,360505595710,1937557458852,
%U 10367717536488,55261185262316,293537189567482,1554428843176696
%N Number of nX5 0..2 arrays with some element plus some horizontally, vertically, diagonally or antidiagonally adjacent neighbor totalling two exactly once.
%C Column 5 of A268774.
%H R. H. Hardin, <a href="/A268771/b268771.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 4*a(n1) +28*a(n2) 62*a(n3) 314*a(n4) +78*a(n5) +867*a(n6) +6*a(n7) 859*a(n8) +46*a(n9) +215*a(n10) 8*a(n11) 16*a(n12) for n>14
%e Some solutions for n=4
%e ..1..2..1..2..2. .2..1..2..1..2. .0..0..1..1..0. .2..2..1..2..1
%e ..2..2..2..2..2. .2..1..2..2..2. .0..0..0..0..0. .2..2..2..2..2
%e ..1..2..2..2..1. .2..2..2..2..2. .0..1..0..1..0. .2..1..2..2..2
%e ..2..2..2..2..1. .2..2..2..2..1. .0..0..0..0..0. .2..2..1..2..1
%Y Cf. A268774.
%K nonn
%O 1,1
%A _R. H. Hardin_, Feb 13 2016
