login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangular table T(n>=0,k=0..n) = A003188(A006068(n) + A006068(k)), read by rows as A(0,0), A(1,0), A(1,1), A(2,0), A(2,1), A(2,2), ...
3

%I #19 Dec 07 2019 12:18:28

%S 0,1,3,2,6,5,3,2,7,6,4,12,15,13,9,5,4,13,12,11,10,6,7,4,5,14,15,12,7,

%T 5,12,4,10,14,13,15,8,24,27,25,29,31,26,30,17,9,8,25,24,31,30,27,26,

%U 19,18,10,11,8,9,26,27,24,25,22,23,20,11,9,24,8,30,26,25,27,18,22,21,23,12,13,14,15,8,9,10,11,28,29,30,31,24

%N Triangular table T(n>=0,k=0..n) = A003188(A006068(n) + A006068(k)), read by rows as A(0,0), A(1,0), A(1,1), A(2,0), A(2,1), A(2,2), ...

%H Antti Karttunen, <a href="/A268719/b268719.txt">Table of n, a(n) for n = 0..15050; rows 0 .. 172 of the triangular table</a>

%F T(n,k) = A003188(A006068(n) + A006068(k)).

%F a(n) = A268715(A003056(n), A002262(n)). [As a linear sequence.]

%e The first fifteen rows of the triangle:

%e 0

%e 1 3

%e 2 6 5

%e 3 2 7 6

%e 4 12 15 13 9

%e 5 4 13 12 11 10

%e 6 7 4 5 14 15 12

%e 7 5 12 4 10 14 13 15

%e 8 24 27 25 29 31 26 30 17

%e 9 8 25 24 31 30 27 26 19 18

%e 10 11 8 9 26 27 24 25 22 23 20

%e 11 9 24 8 30 26 25 27 18 22 21 23

%e 12 13 14 15 8 9 10 11 28 29 30 31 24

%e 13 15 10 14 24 8 11 9 20 28 31 29 25 27

%e 14 10 9 11 27 25 8 24 23 21 28 20 26 30 29

%t a88[n_] := BitXor[n, Floor[n/2]];

%t a68[n_] := BitXor @@ Table[Floor[n/2^m], {m, 0, Floor[Log[2, n]]}];

%t a68[0] = 0;

%t T[n_, k_] := a88[a68[n] + a68[k]];

%t Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Nov 19 2019 *)

%o (Scheme) (define (A268719 n) (A268715bi (A003056 n) (A002262 n)))

%o (Python)

%o def a003188(n): return n^(n>>1)

%o def a006068(n):

%o s=1

%o while True:

%o ns=n>>s

%o if ns==0: break

%o n=n^ns

%o s<<=1

%o return n

%o def T(n, k): a003188(a006068(n) + a006068(k))

%o for n in range(21): print [T(n, k) for k in range(n + 1)] # _Indranil Ghosh_, Jun 07 2017

%Y Cf. A003188, A006068.

%Y Cf. A002262, A003056, A268715.

%Y Cf. A001477 (left edge), A001969 (right edge).

%Y Cf. A268720 (row sums).

%K nonn,tabl

%O 0,3

%A _Antti Karttunen_, Feb 13 2016