login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers n such that n, n + 1, n + 2, n + 3 and n + 4 are products of exactly three primes.
1

%I #17 Sep 08 2022 08:46:15

%S 602,2522,2523,4202,4921,4922,5034,5282,7730,18241,18242,18571,19129,

%T 21931,23161,23305,25203,25553,25554,27290,27291,29233,30354,30793,

%U 32035,33843,34561,35714,36001,36835,40313,40314,40394,45265,55361,67609,69667,70202,72721

%N Numbers n such that n, n + 1, n + 2, n + 3 and n + 4 are products of exactly three primes.

%C Subsequence of A045941. - _Zak Seidov_, Jan 29 2017

%H Chai Wah Wu, <a href="/A268588/b268588.txt">Table of n, a(n) for n = 1..11023</a>

%e a(1) = 602: 602 = 2 * 7 * 43; 603 = 3 * 3 * 67; 604 = 2 * 2 * 151; 605 = 5 * 11 * 11; 606 = 2 * 3 * 101 are all products of three primes.

%e a(4) = 4202 : 4202 = 2 * 11 * 191; 4203 = 3 * 3 * 467; 4204 = 2 * 2 * 1051; 4205 = 5 * 29 * 29; 4206 = 2 * 3 * 701 are all products of three primes.

%p with(numtheory): A268588:= proc() if bigomega(n)=3 and bigomega(n+1)=3 and bigomega(n+2)=3 and bigomega(n+3)=3 and bigomega(n+4)=3 then RETURN (n); fi; end: seq(A268588(), n=1..100000);

%t Select[Range[100000], PrimeOmega[#] == 3 && PrimeOmega[# + 1] == 3 && PrimeOmega[# + 2] == 3 && PrimeOmega[# + 3] == 3 && PrimeOmega[# + 4] == 3 &]

%t SequencePosition[PrimeOmega[Range[73000]],{3,3,3,3,3}][[All,1]] (* _Harvey P. Dale_, Sep 03 2021 *)

%o (PARI) for(n = 1,50000, bigomega(n)==3 & bigomega(n+1)==3 & bigomega(n+2)==3 & bigomega(n+3)==3 & bigomega(n+4)==3 & print1(n,","))

%o (Magma) IsP3:=func< n | &+[k[2]: k in Factorization(n)] eq 3 >; [ n: n in [2..50000] | IsP3(n) and IsP3(n+1) and IsP3(n+2) and IsP3(n+3) and IsP3(n+4)];

%Y Cf. A056809, A113789, A124057, A045941.

%K nonn

%O 1,1

%A _K. D. Bajpai_, Feb 07 2016

%E Comment removed by _Zak Seidov_, Jan 29 2017