login
A268503
Partial sums of the number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 369", based on the 5-celled von Neumann neighborhood.
1
1, 5, 14, 46, 63, 155, 192, 368, 429, 729, 798, 1234, 1371, 1951, 2104, 2948, 3109, 4137, 4390, 5674, 5947, 7567, 7896, 9820, 10233, 12537, 13026, 15642, 16171, 19211, 19832, 23264, 23913, 27917, 28690, 33054, 33899, 38791, 39852, 45228, 46217, 52313, 53418
OFFSET
0,2
COMMENTS
Initialized with a single black (ON) cell at stage zero.
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
MATHEMATICA
CAStep[rule_, a_]:=Map[rule[[10-#]]&, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code=369; stages=128;
rule=IntegerDigits[code, 2, 10];
g=2*stages+1; (* Maximum size of grid *)
a=PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca=a;
ca=Table[ca=CAStep[rule, ca], {n, 1, stages+1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k=(Length[ca[[1]]]+1)/2;
ca=Table[Table[Part[ca[[n]][[j]], Range[k+1-n, k-1+n]], {j, k+1-n, k-1+n}], {n, 1, k}];
on=Map[Function[Apply[Plus, Flatten[#1]]], ca] (* Count ON cells at each stage *)
Table[Total[Part[on, Range[1, i]]], {i, 1, Length[on]}] (* Sum at each stage *)
CROSSREFS
Cf. A268277.
Sequence in context: A270162 A271416 A270179 * A270208 A271463 A272425
KEYWORD
nonn,easy
AUTHOR
Robert Price, Apr 07 2016
STATUS
approved