login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A268481
Triangle that arise in the study of Fekete polynomials.
0
1, -2, 10, 16, -184, 456, -272, 5776, -30736, 55504, 7936, -284288, 2555008, -8998016, 13801600, -353792, 20594432, -280444416, 1567885056, -4267790592, 5960135424, 22368256, -2093148160, 40551058432, -325702463488, 1337523883008, -3059655994368, 4024935613440
OFFSET
1,2
LINKS
Christian Günther, Kai-Uwe Schmidt, Lq norms of Fekete and related polynomials, arXiv:1602.01750 [math.NT], 2016.
EXAMPLE
First few rows are:
1;
-2, 10;
16, -184, 456;
-272, 5776, -30736, 55504;
7936, -284288, 2555008, -8998016, 13801600;
...
MATHEMATICA
T[k_] := T[k] = 1 - Sum[Binomial[2k-1, 2j-1] T[j], {j, 1, k-1}];
eul[n_, x_] := Sum[(-1)^j Binomial[n+1, j] (x-j+1)^n, {j, 0, x+1}];
F[k_, m_] := F[k, m] = If[k == 0 && m == 0, 1, Sum[Binomial[2k-1, 2j-1] T[j] Sum[eul[2j-1, i-1] F[k-j, m-i], {i, 1, m}]/(2j-1)!, {j, 1, k}]];
Table[(2n-1)! F[n, k], {n, 1, 7}, {k, 1, n}] // Flatten (* Jean-François Alcover, Sep 27 2018, from PARI *)
PROG
(PARI) T(k) = {my(j); 1 - sum(j=1, k-1, binomial(2*k-1, 2*j-1)*T(j))};
eul(n, x) = {my(j); sum(j=0, x+1, (-1)^j*binomial(n+1, j)*(x+1-j)^n)};
F(k, m) = if ((k==0) && (m==0), 1, sum(j=1, k, binomial(2*k-1, 2*j-1)*T(j)*sum(i=1, m, eul(2*j-1, i-1)*F(k-j, m-i))/(2*j-1)!));
tabl(nn) = for (n=1, nn, for (k=1, n, print1((2*n-1)!*F(n, k), ", ")); print(); );
CROSSREFS
Cf. A000182 (first column unsigned), A008292 (Eulerian numbers).
Sequence in context: A131474 A249153 A276046 * A009387 A305093 A316753
KEYWORD
sign,tabl
AUTHOR
Michel Marcus, Feb 05 2016
STATUS
approved