login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A268407
Number of North-East lattice paths that do not bounce off the diagonal y = x to the right.
4
1, 2, 5, 15, 48, 160, 548, 1914, 6785, 24335, 88109, 321521, 1181039, 4362855, 16195747, 60379623, 225955264, 848432824, 3195394520, 12067450014, 45685766306, 173350890788, 659126407978, 2510942564760, 9582235262428, 36627111558850, 140214938146148
OFFSET
0,2
COMMENTS
This sequence is related to paired pattern P_2 in Pan and Remmel's link.
LINKS
Ran Pan, Jeffrey B. Remmel, Paired patterns in lattice paths, arXiv:1601.07988 [math.CO], 2016.
FORMULA
G.f.: 2 (-1 + f(x) + x)/(1 - f(x) + (-5 + f(x))*x), where f(x) = sqrt(1 - 4*x).
a(n):= Sum_{k=0..n}((k+1)*fib(k)*binomial(2*n-k,n-k))/(n+1) + C(n), where fib(n) - Fibonacci numbers, C(n) - Catalan numbers. - Vladimir Kruchinin, Feb 27 2016
a(n) ~ 13*4^n/(sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Feb 27 2016
MATHEMATICA
CoefficientList[Series[2 (-1 + Sqrt[1 - 4 x] + x) / (1 - Sqrt[1 - 4 x] + (-5 + Sqrt[1 - 4 x]) x), {x, 0, 33}], x] (* Vincenzo Librandi, Feb 04 2016 *)
PROG
(Maxima) a(n):=sum((k+1)*fib(k)*binomial(2*n-k, n-k), k, 0, n)/(n+1)+binomial(2*n, n)/(n+1); /* Vladimir Kruchinin, Feb 27 2016 */
CROSSREFS
Sequence in context: A301994 A289589 A071739 * A261003 A365268 A366041
KEYWORD
nonn
AUTHOR
Ran Pan, Feb 04 2016
STATUS
approved