OFFSET
0,2
COMMENTS
This sequence is related to paired pattern P_2 in Pan and Remmel's link.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Ran Pan, Jeffrey B. Remmel, Paired patterns in lattice paths, arXiv:1601.07988 [math.CO], 2016.
FORMULA
G.f.: 2 (-1 + f(x) + x)/(1 - f(x) + (-5 + f(x))*x), where f(x) = sqrt(1 - 4*x).
a(n):= Sum_{k=0..n}((k+1)*fib(k)*binomial(2*n-k,n-k))/(n+1) + C(n), where fib(n) - Fibonacci numbers, C(n) - Catalan numbers. - Vladimir Kruchinin, Feb 27 2016
a(n) ~ 13*4^n/(sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Feb 27 2016
MATHEMATICA
CoefficientList[Series[2 (-1 + Sqrt[1 - 4 x] + x) / (1 - Sqrt[1 - 4 x] + (-5 + Sqrt[1 - 4 x]) x), {x, 0, 33}], x] (* Vincenzo Librandi, Feb 04 2016 *)
PROG
(Maxima) a(n):=sum((k+1)*fib(k)*binomial(2*n-k, n-k), k, 0, n)/(n+1)+binomial(2*n, n)/(n+1); /* Vladimir Kruchinin, Feb 27 2016 */
CROSSREFS
KEYWORD
nonn
AUTHOR
Ran Pan, Feb 04 2016
STATUS
approved