login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A268407 Number of North-East lattice paths that do not bounce off the diagonal y = x to the right. 4
1, 2, 5, 15, 48, 160, 548, 1914, 6785, 24335, 88109, 321521, 1181039, 4362855, 16195747, 60379623, 225955264, 848432824, 3195394520, 12067450014, 45685766306, 173350890788, 659126407978, 2510942564760, 9582235262428, 36627111558850, 140214938146148 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

This sequence is related to paired pattern P_2 in Pan and Remmel's link.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Ran Pan, Jeffrey B. Remmel, Paired patterns in lattice paths, arXiv:1601.07988 [math.CO], 2016.

FORMULA

G.f.: 2 (-1 + f(x) + x)/(1 - f(x) + (-5 + f(x))*x), where f(x) = sqrt(1 - 4*x).

a(n):= Sum_{k=0..n}((k+1)*fib(k)*binomial(2*n-k,n-k))/(n+1) + C(n), where fib(n) - Fibonacci numbers, C(n) - Catalan numbers. - Vladimir Kruchinin, Feb 27 2016

a(n) ~ 13*4^n/(sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Feb 27 2016

MATHEMATICA

CoefficientList[Series[2 (-1 + Sqrt[1 - 4 x] + x) / (1 - Sqrt[1 - 4 x] + (-5 + Sqrt[1 - 4 x]) x), {x, 0, 33}], x] (* Vincenzo Librandi, Feb 04 2016 *)

PROG

(Maxima) a(n):=sum((k+1)*fib(k)*binomial(2*n-k, n-k), k, 0, n)/(n+1)+binomial(2*n, n)/(n+1); /* Vladimir Kruchinin, Feb 27 2016 */

CROSSREFS

Cf. A000045, A000108.

Sequence in context: A301994 A289589 A071739 * A261003 A218251 A203067

Adjacent sequences:  A268404 A268405 A268406 * A268408 A268409 A268410

KEYWORD

nonn

AUTHOR

Ran Pan, Feb 04 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 1 11:38 EST 2021. Contains 349429 sequences. (Running on oeis4.)