login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A268407 Number of North-East lattice paths that do not bounce off the diagonal y = x to the right. 4
1, 2, 5, 15, 48, 160, 548, 1914, 6785, 24335, 88109, 321521, 1181039, 4362855, 16195747, 60379623, 225955264, 848432824, 3195394520, 12067450014, 45685766306, 173350890788, 659126407978, 2510942564760, 9582235262428, 36627111558850, 140214938146148 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

This sequence is related to paired pattern P_2 in Pan and Remmel's link.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Ran Pan, Jeffrey B. Remmel, Paired patterns in lattice paths, arXiv:1601.07988 [math.CO], 2016.

FORMULA

G.f.: 2 (-1 + f(x) + x)/(1 - f(x) + (-5 + f(x))*x), where f(x) = sqrt(1 - 4*x).

a(n):= Sum_{k=0..n}((k+1)*fib(k)*binomial(2*n-k,n-k))/(n+1) + C(n), where fib(n) - Fibonacci numbers, C(n) - Catalan numbers. - Vladimir Kruchinin, Feb 27 2016

a(n) ~ 13*4^n/(sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Feb 27 2016

MATHEMATICA

CoefficientList[Series[2 (-1 + Sqrt[1 - 4 x] + x) / (1 - Sqrt[1 - 4 x] + (-5 + Sqrt[1 - 4 x]) x), {x, 0, 33}], x] (* Vincenzo Librandi, Feb 04 2016 *)

PROG

(Maxima) a(n):=sum((k+1)*fib(k)*binomial(2*n-k, n-k), k, 0, n)/(n+1)+binomial(2*n, n)/(n+1); /* Vladimir Kruchinin, Feb 27 2016 */

CROSSREFS

Cf. A000045, A000108.

Sequence in context: A149926 A289589 A071739 * A261003 A218251 A203067

Adjacent sequences:  A268404 A268405 A268406 * A268408 A268409 A268410

KEYWORD

nonn

AUTHOR

Ran Pan, Feb 04 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified September 26 06:54 EDT 2017. Contains 292502 sequences.