The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A268407 Number of North-East lattice paths that do not bounce off the diagonal y = x to the right. 4
 1, 2, 5, 15, 48, 160, 548, 1914, 6785, 24335, 88109, 321521, 1181039, 4362855, 16195747, 60379623, 225955264, 848432824, 3195394520, 12067450014, 45685766306, 173350890788, 659126407978, 2510942564760, 9582235262428, 36627111558850, 140214938146148 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS This sequence is related to paired pattern P_2 in Pan and Remmel's link. LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Ran Pan, Jeffrey B. Remmel, Paired patterns in lattice paths, arXiv:1601.07988 [math.CO], 2016. FORMULA G.f.: 2 (-1 + f(x) + x)/(1 - f(x) + (-5 + f(x))*x), where f(x) = sqrt(1 - 4*x). a(n):= Sum_{k=0..n}((k+1)*fib(k)*binomial(2*n-k,n-k))/(n+1) + C(n), where fib(n) - Fibonacci numbers, C(n) - Catalan numbers. - Vladimir Kruchinin, Feb 27 2016 a(n) ~ 13*4^n/(sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Feb 27 2016 MATHEMATICA CoefficientList[Series[2 (-1 + Sqrt[1 - 4 x] + x) / (1 - Sqrt[1 - 4 x] + (-5 + Sqrt[1 - 4 x]) x), {x, 0, 33}], x] (* Vincenzo Librandi, Feb 04 2016 *) PROG (Maxima) a(n):=sum((k+1)*fib(k)*binomial(2*n-k, n-k), k, 0, n)/(n+1)+binomial(2*n, n)/(n+1); /* Vladimir Kruchinin, Feb 27 2016 */ CROSSREFS Cf. A000045, A000108. Sequence in context: A301994 A289589 A071739 * A261003 A218251 A203067 Adjacent sequences:  A268404 A268405 A268406 * A268408 A268409 A268410 KEYWORD nonn AUTHOR Ran Pan, Feb 04 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 1 11:38 EST 2021. Contains 349429 sequences. (Running on oeis4.)