login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = A193231(A268387(n)).
4

%I #26 Jun 19 2020 04:21:27

%S 0,1,1,3,1,0,1,2,3,0,1,2,1,0,0,5,1,2,1,2,0,0,1,3,3,0,2,2,1,1,1,4,0,0,

%T 0,0,1,0,0,3,1,1,1,2,2,0,1,4,3,2,0,2,1,3,0,3,0,0,1,3,1,0,2,6,0,1,1,2,

%U 0,1,1,1,1,0,2,2,0,1,1,4,5,0,1,3,0,0,0,3,1,3,0,2,0,0,0,5,1,2,2,0,1,1,1,3,1,0,1,1,1,1,0,4,1,1,0,2,2,0,0,2

%N a(n) = A193231(A268387(n)).

%H Antti Karttunen, <a href="/A268386/b268386.txt">Table of n, a(n) for n = 1..16384</a>

%F The following two formulas are equivalent because A193231 distributes over bitwise XOR (A003987):

%F a(n) = A193231(A268387(n)) and

%F a(n) = A268387(A268385(n)).

%F a(2^k) = A193231(k). - _Peter Munn_, May 07 2020

%F From _Peter Munn_, Jun 02 2020: (Start)

%F Alternative definition, for n, k >= 1, where XOR denotes A003987:

%F a(prime(n)) = 1, where prime(n) = A000040(n);

%F a(n^2) = a(n) XOR (2 * a(n)) = A048720(a(n), 3);

%F a(A059897(n, k)) = a(n) XOR a(k).

%F (End)

%t f[n_] := Which[0 <= # <= 1, #, EvenQ@ #, BitXor[2 #, #] &[f[#/2]], True, BitXor[#, 2 # + 1] &[f[(# - 1)/2]]] &@ Abs@ n; {0}~Join~Table[f[BitXor @@ Map[Last, FactorInteger@ n]], {n, 2, 120}] (* _Michael De Vlieger_, Feb 12 2016, after _Robert G. Wilson v_ at A048724 and A065621 *)

%o (Scheme) (define (A268386 n) (A193231 (A268387 n)))

%o (PARI)

%o a268387(n) = {my(f = factor(n), b = 0); for (k=1, #f~, b = bitxor(b, f[k, 2]); ); b; }

%o a193231(n) = {my(x='x); subst(lift(Mod(1, 2)*subst(Pol(binary(n), x), x, 1+x)), x, 2)};

%o a(n) = a193231(a268387(n)); \\ _Michel Marcus_, May 09 2020

%Y A003987, A048720, A059897, A193231, A268385, A268387 are used in definitions of this sequence.

%Y Cf. A000028 (indices of odd numbers), A000379 (indices of even numbers), A268390 (indices of zeros).

%K nonn

%O 1,4

%A _Antti Karttunen_, Feb 10 2016