login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A268302
G.f.: Sum_{n>=1} x^(n*(n-1)/2) * (G(x)^n + 1/G(x)^(n-1)), where G(x) is the g.f. of A268300.
2
3, 8, 28, 144, 736, 4024, 22912, 134784, 813476, 5010904, 31379808, 199196320, 1278911808, 8290414024, 54186864896, 356711621984, 2362968349568, 15739688709864, 105357470567228, 708338644347808, 4781146692837856, 32387329985982176, 220104493513881920, 1500273861724289984, 10253983269166864256, 70258772726034956688, 482514972838806347776, 3320848006096569464080, 22900703924095461843008, 158216154716853989543080
OFFSET
0,1
FORMULA
G.f.: Product_{n>=1} (1-x^n) * (1 + x^n/G(x)) * (1 + x^(n-1)*G(x)), where G(x) is the g.f. of A268300.
EXAMPLE
G.f.: A(x) = 3 + 8*x + 28*x^2 + 144*x^3 + 736*x^4 + 4024*x^5 + 22912*x^6 + 134784*x^7 + 813476*x^8 + 5010904*x^9 + 31379808*x^10 +...
such that
A(x) = Sum_{n>=1} x^(n*(n-1)/2) * (G(x)^n + 1/G(x)^(n-1)),
that is,
A(x) = (G(x) + 1) + x*(G(x)^2 + 1/G(x)) + x^3*(G(x)^3 + 1/G(x)^2) + x^6*(G(x)^4 + 1/G(x)^3) + x^10*(G(x)^5 + 1/G(x)^4) + x^15*(G(x)^6 + 1/G(x)^5) +...,
where
G(x) = 2 + 7*2*x/4 + 119*2*x^2/4^2 + 2118*2*x^3/4^3 + 42523*2*x^4/4^4 + 914922*2*x^5/4^5 + 20745494*2*x^6/4^6 + 487390092*2*x^7/4^7 + 11764545555*2*x^8/4^8 + 289962708802*2*x^9/4^9 +...+ A268300(n)*2*x^n/4^n +...
satisfies:
-1 = Product_{n>=1} (1-x^n) * (1 - x^n/G(x)) * (1 - x^(n-1)*G(x)).
CROSSREFS
Sequence in context: A355986 A373753 A000239 * A345177 A342139 A195687
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 26 2016
STATUS
approved