login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Period 15: repeat {18, 20, 28, 20, 20, 22, 18, 22, 20, 16, 12, 22, 18, 40, 18}.
1

%I #31 Sep 08 2022 08:46:15

%S 18,20,28,20,20,22,18,22,20,16,12,22,18,40,18,18,20,28,20,20,22,18,22,

%T 20,16,12,22,18,40,18,18,20,28,20,20,22,18,22,20,16,12,22,18,40,18,18,

%U 20,28,20,20,22,18,22,20,16,12,22,18,40,18,18,20,28,20,20,22,18,22,20,16,12,22,18,40,18

%N Period 15: repeat {18, 20, 28, 20, 20, 22, 18, 22, 20, 16, 12, 22, 18, 40, 18}.

%C Number of living cells periodic figure (oscillators: pentadecathlon (period 15)) in the Conway's Game of Life (rule B3/S23: see Graphical example in Links section).

%H Golly, <a href="http://golly.sourceforge.net">Cross-platform application for exploring Conway's Game of Life and other cellular automata</a>

%H Ilya Gutkovskiy, <a href="/A268284/a268284.txt">Graphical example (generation 0-15)</a>

%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GameofLife.html">Game of Life</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Conway%27s_Game_of_Life">Conway's Game of Life</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Oscillator_(cellular_automaton)">Oscillator (cellular automaton)</a>

%H <a href="/index/Rec#order_15">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,0,0,0,0,0,0,0,0,0,1).

%F For k>=0:

%F a((30*k - 2*sin((Pi*k)/2) - 18*cos((Pi*k)/2) - cos(Pi*k) + 19)/8) = 18;

%F a((30*k + 10*sin((Pi*k)/2) + 18*cos((Pi*k)/2) + 3*cos(Pi*k) - 13)/8) = 20;

%F a(15*k + 2) = 28;

%F a(15*k + 9) = 16;

%F a(15*k + 10) = 12;

%F a(15*k + 13) = 40.

%e Start pattern (see Graphical example in Links section):

%e |. . . . . . . . . . . . . . . .| . . . . . . . . . . . . . . . .|

%e |. . . . . . . . . . . . . . . .| . . . . . . . . . . . . . . . .|

%e |. . . . o . . . . . . o . . . .| . . . o o . . . . . . o o . . .|

%e |. . . o o . . . . . . o o . . .| . . o . . o . . . . o . . o . .|

%e |. . o o o . . . . . . o o o . .| . . o . . o . . . . o . . o . .|

%e |. . . o o . . . . . . o o . . .| . . o . . o . . . . o . . o . .|

%e |. . . . o . . . . . . o . . . .| . . . o o . . . . . . o o . . .|

%e |. . . . . . . . . . . . . . . .| . . . . . . . . . . . . . . . .|

%e |. . . . . . . . . . . . . . . .| . . . . . . . . . . . . . . . .|

%e |(generation 0) |(generation 1), etc. |

%t LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}, {18, 20, 28, 20, 20, 22, 18, 22, 20, 16, 12, 22, 18, 40, 18}, 80]

%o (Magma) &cat[[18,20,28,20,20,22,18,22,20,16,12,22,18,40,18]^^7]; // _Vincenzo Librandi_, Jan 30 2016

%o (PARI) a(n)=2*[9, 10, 14, 10, 10, 11, 9, 11, 10, 8, 6, 11, 9, 20, 9][n%15+1] \\ _Charles R Greathouse IV_, Jul 17 2016

%Y Cf. A061342, A152389, A179409.

%K nonn,easy

%O 0,1

%A _Ilya Gutkovskiy_, Jan 30 2016