%I #17 Jun 21 2016 01:17:02
%S 6,12,32,60,2560
%N Number of distinct directed Hamiltonian cycles of the Platonic graphs (in the order of tetrahedral, cubical, octahedral, dodecahedral, and icosahedral graph).
%C a(n)/2 is the number of distinct undirected Hamiltonian cycles of the Platonic graph corresponding to a(n).
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/TetrahedralGraph.html">Tetrahedral Graph</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/CubicalGraph.html">Cubical Graph</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/OctahedralGraph.html">Octahedral Graph</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/DodecahedralGraph.html">Dodecahedral Graph</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/IcosahedralGraph.html">Icosahedral Graph</a>
%Y Cf. A052762 (tetrahedral graph), A140986 (cubical graph), A115400 (octahedral graph), A218513 (dodecahedral graph), A218514 (icosahedral graph).
%K nonn,fini,full
%O 1,1
%A _Melvin Peralta_, Jan 29 2016