Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #4 Jan 29 2016 07:24:34
%S 2,9,4,64,81,6,615,4096,576,9,7536,378225,216000,3969,12,112476,
%T 56791296,197555340,10941048,25281,16,1981512,12650850576,
%U 371713931400,98956027822,519718464,155236,20,40265487,3926389806144,1257212773492866
%N T(n,k)=Number of nXk 0..k arrays with every repeated value in every row greater than or equal to, and every column greater than, the previous repeated value.
%C Table starts
%C ..2......9..........64............615.............7536................112476
%C ..4.....81........4096.........378225.........56791296...........12650850576
%C ..6....576......216000......197555340.....371713931400......1257212773492866
%C ..9...3969....10941048....98956027822.2335306173137957.120138605995104637373
%C .12..25281...519718464.46876747497685
%C .16.155236.23689358848
%C .20.915849
%C .25
%H R. H. Hardin, <a href="/A268246/b268246.txt">Table of n, a(n) for n = 1..40</a>
%F Empirical for column k:
%F k=1: a(n) = 2*a(n-1) -2*a(n-3) +a(n-4)
%F k=2: [order 15]
%F k=3: [order 40]
%e Some solutions for n=2 k=4
%e ..1..1..0..1....0..0..2..0....0..1..2..0....0..2..2..2....1..1..2..3
%e ..1..0..2..2....3..4..4..3....2..3..1..2....0..3..0..1....1..0..4..2
%Y Column 1 is A002620(n+2).
%Y Column 2 is A267961.
%Y Column 3 is A267971.
%Y Row 1 is A268104.
%Y Row 2 is A268105.
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_, Jan 29 2016