%I #21 Jan 08 2018 01:58:32
%S 5,15,30,35,105,210,70,280,840,1680,126,630,2520,7560,210,1260,6300,
%T 25200,75600,151200,330,2310,13860,69300,277200,831600,1663200,495,
%U 3960,27720,166320,831600,3326400,9979200,19958400
%N Triangle read by rows: T(n,k) (n>=5, k=3..n+1) is the number of topologies t on n points having exactly k open sets such that t contains exactly one open set of size m for each m in {0,4,5,6,...,s,n} where s is the size of the largest proper open set in t.
%H G. A. Kamel, <a href="http://www.aascit.org/journal/archive2?journalId=928&paperId=2310">Partial Chain Topologies on Finite Sets</a>, Computational and Applied Mathematics Journal. Vol. 1, No. 4, 2015, pp. 174-179.
%e Triangle begins:
%e 5,
%e 15,30,
%e 35,105,210,
%e 70,280,840,1680,
%e 126,630,2520,7560,15120,
%e 210,1260,6300,25200,75600,151200,
%e ...
%t i = 4; Table[Table[Binomial[n, i] FactorialPower[n - i, k], {k, 0,
%t n - i - 1}], {n, 2, 12}] // Grid (* _Geoffrey Critzer_, Feb 19 2017 *)
%Y Row sums give A268219.
%Y Triangles in this series: A268216, A268217, A268221, A268222, A268223.
%Y Cf. A282507.
%K nonn,tabl,more
%O 5,1
%A _N. J. A. Sloane_, Jan 30 2016
%E Title clarified and more terms added by _Geoffrey Critzer_, Feb 19 2017