login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (n!/4!)*Sum(1/k!,k=1..n-4).
4

%I #8 Jan 30 2016 16:56:56

%S 0,0,0,0,0,5,45,350,2870,25956,259770,2857800,34294095,445823950,

%T 6241536301,93623045880,1497968735900,25465468512680,458378433231300,

%U 8709190231398576,174183804627976365,3657859897187509650,80472917738125219615,1850877107976880060000,44421050591445121450626

%N a(n) = (n!/4!)*Sum(1/k!,k=1..n-4).

%H G. A. Kamel, <a href="http://www.aascit.org/journal/archive2?journalId=928&amp;paperId=2310">Partial Chain Topologies on Finite Sets</a>, Computational and Applied Mathematics Journal. Vol. 1, No. 4, 2015, pp. 174-179.

%p g:=(r,n)->(n!/r!)*add(1/k!,k=1..n-r);

%p g2:=r->[seq(g(r,n),n=0..30)];

%p g2(4);

%o (PARI) a(n) = (n!/4!)*sum(k=1, n-4, 1/k!); \\ _Michel Marcus_, Jan 30 2016

%Y For others in this series, see A038156, A038158, A268218, A268220.

%K nonn

%O 0,6

%A _N. J. A. Sloane_, Jan 30 2016