login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Primes p of the form sigma(2^k + 1) - 1 for some k >= 0.
1

%I #31 Sep 28 2024 14:27:04

%S 2,3,5,17,47,83,257,1301,65537,174767,5048231,51322664447,

%T 188313058624991,4768522825659911,3148244377723715041631,

%U 211635519858089932125000235391,906780938207203620571208267879698943,6392739029893008727817055462596999999

%N Primes p of the form sigma(2^k + 1) - 1 for some k >= 0.

%C Corresponding values of k: 0, 1, 2, 4, 5, 6, 8, 10, 16, 17, 22, 35, 47, 52, 71, 97, 119, 122, 124, 190, 300, ...

%C Fermat primes from A019434 are in the sequence.

%H Jaroslav Krizek, <a href="/A268130/b268130.txt">Table of n, a(n) for n = 1..21</a>

%e Prime 47 is a term because for k = 5, sigma(2^5+1) - 1 = sigma(33) - 1 = 47.

%o (Magma) Set(Sort([SumOfDivisors(2^n+1)-1: n in [0..300] | IsPrime(SumOfDivisors(2^n+1)-1)]));

%o (PARI) lista(nn) = for (n=0, nn, if (isprime(p=sigma(2^n + 1) - 1), print1(p, ", "))); \\ _Michel Marcus_, Jan 27 2016

%Y Cf. A000051, A000203, A069061, A019434.

%K nonn

%O 1,1

%A _Jaroslav Krizek_, Jan 26 2016