login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of 2 X n 0..2 arrays with every repeated value in every row not one larger and in every column one larger mod 3 than the previous repeated value, and upper left element zero.
1

%I #8 Jan 11 2019 15:23:14

%S 3,27,243,2028,16428,129792,1009200,7756992,59140800,448278528,

%T 3383655168,25462705152,191189978112,1433272320000,10732091092992,

%U 80291457712128,600321157939200,4486422252748800,33517530883227648

%N Number of 2 X n 0..2 arrays with every repeated value in every row not one larger and in every column one larger mod 3 than the previous repeated value, and upper left element zero.

%H R. H. Hardin, <a href="/A268094/b268094.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 14*a(n-1) - 44*a(n-2) - 88*a(n-3) + 352*a(n-4) + 320*a(n-5) - 256*a(n-6).

%F Empirical g.f.: 3*x*(1 - 5*x - x^2 + 26*x^3 + 16*x^4 - 16*x^5) / ((1 + 2*x)*(1 - 4*x)*(1 - 8*x + 4*x^2)*(1 - 4*x - 8*x^2)). - _Colin Barker_, Jan 11 2019

%e Some solutions for n=4:

%e ..0..2..0..1....0..0..2..2....0..2..1..2....0..1..1..2....0..2..1..0

%e ..2..0..1..1....2..1..0..1....0..2..1..0....0..0..0..0....2..0..1..1

%Y Row 2 of A268092.

%K nonn

%O 1,1

%A _R. H. Hardin_, Jan 26 2016