login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers n such that concatenating prime(n) with n^2 is prime.
1

%I #9 Sep 08 2022 08:46:15

%S 3,9,11,29,33,39,121,153,177,179,187,193,207,231,261,291,357,361,423,

%T 471,487,507,543,579,621,627,633,641,659,683,699,737,773,843,863,879,

%U 907,933,957,1009,1011,1023,1049,1051,1099,1101,1107,1131,1191,1327,1387,1403

%N Numbers n such that concatenating prime(n) with n^2 is prime.

%C All the terms in this sequence are odd numbers.

%H K. D. Bajpai, <a href="/A268033/b268033.txt">Table of n, a(n) for n = 1..10000</a>

%e 9 appears in the sequence because prime(9) || 9^2 = 2381 which is prime.

%e 11 appears in the sequence because prime(11) || 11^2 = 31121 which is prime.

%p select(n -> andmap(isprime, parse(cat(ithprime(n), n^2))), [seq(n, n=1..5000)]);

%t Select[Range[5000], PrimeQ[FromDigits[Flatten[{IntegerDigits[Prime[#]], IntegerDigits[#^2]}]]] &]

%o (PARI) for (n = 1,1000,if(isprime(k=eval(Str(prime(n),n^2))), print1(n, ", ")))

%o (Magma) [n:n in[1..500]|IsPrime(m) where m is Seqint(Intseq(n^2) cat Intseq(NthPrime(n)))];

%Y Cf. A000040, A000290.

%K nonn,base

%O 1,1

%A _K. D. Bajpai_, Jan 24 2016