login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k)=Number of nXk 0..3 arrays with every repeated value in every row and column greater than the previous repeated value.
6

%I #4 Jan 22 2016 10:10:16

%S 4,16,16,60,256,60,222,3600,3600,222,804,49284,178068,49284,804,2872,

%T 646416,8459154,8459154,646416,2872,10132,8248384,376812420,

%U 1376175262,376812420,8248384,10132,35383,102657424,16109362560,205495778969

%N T(n,k)=Number of nXk 0..3 arrays with every repeated value in every row and column greater than the previous repeated value.

%C Table starts

%C ......4..........16.............60..............222...............804

%C .....16.........256...........3600............49284............646416

%C .....60........3600.........178068..........8459154.........376812420

%C ....222.......49284........8459154.......1376175262......205495778969

%C ....804......646416......376812420.....205495778969...100687082932722

%C ...2872.....8248384....16109362560...29057389299071.46100277695598540

%C ..10132...102657424...663451196118.3909876972823819

%C ..35383..1251956689.26507885328672

%C .122480.15001350400

%C .420752

%H R. H. Hardin, <a href="/A267933/b267933.txt">Table of n, a(n) for n = 1..60</a>

%F Empirical for column k:

%F k=1: [linear recurrence of order 8]

%F k=2: [order 21]

%F k=3: [order 81]

%e Some solutions for n=3 k=4

%e ..0..2..0..0....2..2..3..2....2..0..0..2....2..2..1..3....0..2..3..0

%e ..2..1..2..3....2..1..3..1....0..2..0..3....2..1..1..2....2..3..2..1

%e ..0..0..2..3....0..0..1..3....0..0..3..2....0..2..0..3....0..0..3..3

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Jan 22 2016