login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A267884
Total number of OFF (white) cells after n iterations of the "Rule 233" elementary cellular automaton starting with a single ON (black) cell.
1
0, 3, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6
OFFSET
0,2
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
FORMULA
Conjectures from Colin Barker, Jan 24 2016 and Apr 20 2019: (Start)
a(n) = 6 for n>2.
a(n) = a(n-1) for n>3.
G.f.: x*(3+2*x+x^2) / (1-x).
(End)
MATHEMATICA
rule=233; rows=20; ca=CellularAutomaton[rule, {{1}, 0}, rows-1, {All, All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]], {rows-k+1, rows+k-1}], {k, 1, rows}]; (* Truncated list of each row *) nbc=Table[Total[catri[[k]]], {k, 1, rows}]; (* Number of Black cells in stage n *) nwc=Table[Length[catri[[k]]]-nbc[[k]], {k, 1, rows}]; (* Number of White cells in stage n *) Table[Total[Take[nwc, k]], {k, 1, rows}] (* Number of White cells through stage n *)
CROSSREFS
Cf. A267868.
Sequence in context: A343460 A224831 A281591 * A370088 A077859 A342269
KEYWORD
nonn,easy
AUTHOR
Robert Price, Jan 21 2016
STATUS
approved