login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A267879
Binary representation of the middle column of the "Rule 233" elementary cellular automaton starting with a single ON (black) cell.
1
1, 10, 101, 1010, 10101, 101011, 1010111, 10101111, 101011111, 1010111111, 10101111111, 101011111111, 1010111111111, 10101111111111, 101011111111111, 1010111111111111, 10101111111111111, 101011111111111111, 1010111111111111111, 10101111111111111111
OFFSET
0,2
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
FORMULA
Conjectures from Colin Barker, Jan 22 2016 and Apr 20 2019: (Start)
a(n) = 11*a(n-1)-10*a(n-2) for n>4.
G.f.: (1-x+x^2-x^3+x^4) / ((1-x)*(1-10*x)).
(End)
Conjecture: a(n) = (9091*10^(n-3) - 1)/9 for n > 2. - Stefano Spezia, Dec 25 2021
MATHEMATICA
rule=233; rows=20; ca=CellularAutomaton[rule, {{1}, 0}, rows-1, {All, All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]], {rows-k+1, rows+k-1}], {k, 1, rows}]; (* Truncated list of each row *) mc=Table[catri[[k]][[k]], {k, 1, rows}]; (* Keep only middle cell from each row *) Table[FromDigits[Take[mc, k]], {k, 1, rows}] (* Binary Representation of Middle Column *)
CROSSREFS
Cf. A267868.
Sequence in context: A279665 A266247 A267443 * A284137 A284179 A096883
KEYWORD
nonn,easy
AUTHOR
Robert Price, Jan 21 2016
STATUS
approved