%I #27 May 04 2017 06:03:16
%S 1,1,3,1,6,12,1,9,36,60,1,12,72,240,360,1,15,120,600,1800,2520,1,18,
%T 180,1200,5400,15120,20160,1,21,252,2100,12600,52920,141120,181440,1,
%U 24,336,3360,25200,141120,564480,1451520,1814400,1,27,432,5040,45360,317520,1693440,6531840,16329600,19958400
%N Triangular array: T(n,k) is the 2-row creation rook number to place k rooks on a 3 x n board.
%C T(n,k) is the number of ways to place k rooks in a 3 x n Ferrers board (or diagram) under the Goldman-Haglund i-row creation rook mode for i=2. All row heights are 3.
%H Jay Goldman and James Haglund, <a href="http://dx.doi.org/10.1006/jcta.2000.3113">Generalized rook polynomials</a>, J. Combin. Theory A 91 (2000), 509-530.
%F T(n,k) = T(n-1,k) + (k+2) T(n-1,k-1) subject to T(0,0)=1, T(n,k)=0 for n<k and for k<0.
%e The triangle T(n,k) begins in row n=0 with columns 0<=k<=n:
%e 1
%e 1 3
%e 1 6 12
%e 1 9 36 60
%e 1 12 72 240 360
%e 1 15 120 600 1800 2520
%e 1 18 180 1200 5400 15120 20160
%e 1 21 252 2100 12600 52920 141120 181440
%e 1 24 336 3360 25200 141120 564480 1451520 1814400
%e 1 27 432 5040 45360 317520 1693440 6531840 16329600 19958400
%Y Cf. A013610 (1-rook coefficients on the 3xn board), A121757 (2-rook coeffs. on the 2xn board), A013609 (1-rook coeffs. on the 2xn board), A013611 (1-rook coeffs. on the 4xn board), A008279 (2-rook coeffs. on the 1xn board), A082030 (row sums?), A049598 (column k=2), A007531 (column k=3 w/o factor 10), A001710 (diagonal?).
%K nonn,easy,tabl
%O 0,3
%A _Ken Joffaniel M. Gonzales_, Jan 21 2016
%E Triangle simplified (reversing rows, offset 0). - _R. J. Mathar_, May 03 2017