login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k)=Number of nXk 0..1 arrays with every repeated value in every row greater than or equal to, and in every column greater than, the previous repeated value.
12

%I #4 Jan 20 2016 12:31:18

%S 2,4,4,8,16,6,15,64,36,9,28,225,216,81,12,51,784,1056,729,144,16,92,

%T 2601,5004,5081,1728,256,20,164,8464,22110,34173,14956,4096,400,25,

%U 290,26896,94554,211555,122770,44742,8000,625,30,509,84100,391314,1262760,912667

%N T(n,k)=Number of nXk 0..1 arrays with every repeated value in every row greater than or equal to, and in every column greater than, the previous repeated value.

%C Table starts

%C ..2....4.....8.....15.......28........51.........92.........164..........290

%C ..4...16....64....225......784......2601.......8464.......26896........84100

%C ..6...36...216...1056.....5004.....22110......94554......391314......1582824

%C ..9...81...729...5081....34173....211555....1262760.....7263481.....40755550

%C .12..144..1728..14956...122770....912667....6484282....44116906....291598056

%C .16..256..4096..44742...460598...4245574...37282358...312449872...2540944329

%C .20..400..8000.102954..1234716..13126812..132388406..1271314080..11831791048

%C .25..625.15625.238813..3380133..42012357..494152778..5520112546..59723941668

%C .30..900.27000.472174..7591852.106570618.1413416776.17806098826.217360101006

%C .36.1296.46656.935890.17155354.272337497.4075463059.57801662876.793861159136

%H R. H. Hardin, <a href="/A267788/b267788.txt">Table of n, a(n) for n = 1..200</a>

%F Empirical for column k:

%F k=1: a(n) = 2*a(n-1) -2*a(n-3) +a(n-4)

%F k=2: a(n) = 2*a(n-1) +2*a(n-2) -6*a(n-3) +6*a(n-5) -2*a(n-6) -2*a(n-7) +a(n-8)

%F k=3: [order 12]

%F k=4: [order 16] for n>18

%F k=5: [order 20] for n>22

%F k=6: [order 24] for n>27

%F Empirical for row n:

%F n=1: a(n) = 2*a(n-1) +a(n-2) -2*a(n-3) -a(n-4)

%F n=2: [order 9]

%F n=3: [order 12]

%F n=4: [order 93]

%e Some solutions for n=4 k=4

%e ..1..0..1..0....1..0..0..0....0..1..0..0....1..1..1..0....1..1..0..1

%e ..0..1..0..1....1..1..0..1....0..0..0..0....0..0..0..0....0..0..0..0

%e ..0..0..1..0....0..0..1..1....1..1..1..1....0..1..0..1....1..1..1..1

%e ..1..1..1..1....1..0..0..0....1..0..1..0....1..1..1..1....1..0..0..0

%Y Column 1 is A002620(n+2).

%Y Column 2 is A030179(n+2).

%Y Row 1 is A029907(n+1).

%Y Row 2 is A267729.

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Jan 20 2016