login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A267702
Numbers that are the sum of 3 nonzero squares (A000408) and the sum of 2 positive cubes (A003325).
4
9, 35, 54, 65, 72, 91, 126, 133, 152, 189, 217, 224, 243, 250, 280, 341, 344, 370, 432, 468, 513, 539, 576, 637, 686, 728, 730, 737, 756, 793, 854, 945, 1001, 1027, 1064, 1072, 1125, 1216, 1241, 1332, 1339, 1358, 1395, 1456, 1458, 1512, 1547, 1674, 1729, 1736, 1755, 1843, 1853
OFFSET
1,1
COMMENTS
Intersection of A000408 and A003325.
Sequence focuses on the solutions of equation x^3 + y^3 = a^2 + b^2 + c^2 where x, y, a, b, c > 0.
LINKS
EXAMPLE
9 is a term because 9 = 1^3 + 2^3 = 1^2 + 2^2 + 2^2.
35 is a term because 35 = 2^3 + 3^3 = 1^2 + 3^2 + 5^2.
54 is a term because 54 = 3^3 + 3^3 = 3^2 + 3^2 + 6^2.
MAPLE
N:= 1000: # to get all terms <= N
S3:= {seq(seq(seq(a^2+b^2+c^2, c = b .. floor(sqrt(N-a^2-b^2))),
b=a .. floor(sqrt((N-a^2)/2))), a = 1 .. floor(sqrt(N/3)))}:
C2:= {seq(seq(a^3+b^3, b = a .. floor((N-a^3)^(1/3))), a = 1 .. floor((N/2)^(1/3)))}:
sort(convert(S3 intersect C2, list)); # Robert Israel, Jan 25 2016
PROG
(PARI) isA000408(n) = {my(a, b); a=1; while(a^2+1<n, b=1; while(b<=a && a^2+b^2<n, if(issquare(n-a^2-b^2), return(1)); b++; ); a++; ); return(0); }
T=thueinit('z^3+1);
isA003325(n)=#select(v->min(v[1], v[2])>0, thue(T, n))>0;
for(n=3, 1e4, if(isA000408(n) && isA003325(n), print1(n, ", ")));
CROSSREFS
Sequence in context: A187554 A379128 A338010 * A339995 A085366 A304913
KEYWORD
nonn
AUTHOR
Altug Alkan, Jan 23 2016
STATUS
approved