Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #29 Jun 14 2022 01:23:11
%S 1,0,21,99,471,1935,8031,32319,130431,522495,2094591,8381439,33544191,
%T 134189055,536829951,2147368959,8589770751,34359279615,137438298111,
%U 549753978879,2199020634111,8796085682175,35184361603071,140737458995199,562949911478271
%N Decimal representation of the n-th iteration of the "Rule 201" elementary cellular automaton starting with a single ON (black) cell.
%C The fact that only n cells to the left and right of the initially active cell are updated at step n (cf. A267679 for the binary representation) is contradictory to the usual treatment of a "Rule m" automaton, where all cells are updated depending on their neighborhood. See also the illustration of "Rule 201" on the MathWorld page. - _M. F. Hasler_, Jul 28 2018
%D S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
%H Robert Price, <a href="/A267681/b267681.txt">Table of n, a(n) for n = 0..1000</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>
%H S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>
%H <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%H <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>
%F Conjectures from _Colin Barker_, Jan 19 2016: (Start)
%F a(n) = 5*a(n-1)-20*a(n-3)+16*a(n-4) for n>4.
%F G.f.: (1-5*x+21*x^2+14*x^3-40*x^4) / ((1-x)*(1-2*x)*(1+2*x)*(1-4*x)).
%F (End)
%F Conjecture: a(n) = 2*4^n - (n%2*2 + [n]*5)*2^(n-1) - 1, where [n] = 1 iff n > 0; n%2 = 1 iff n is odd. - _M. F. Hasler_, Jul 28 2018
%t rule=201; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) Table[FromDigits[catri[[k]],2],{k,1,rows}] (* Decimal Representation of Rows *)
%Y Cf. A267679, A267680.
%K nonn
%O 0,3
%A _Robert Price_, Jan 19 2016
%E Removed an unjustified claim that _Colin Barker_'s conjectures are correct. Removed a program based on a conjecture. - _Michael De Vlieger_, Jun 13 2022