login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal representation of the n-th iteration of the "Rule 173" elementary cellular automaton starting with a single ON (black) cell.
2

%I #29 Jul 06 2023 13:22:33

%S 1,2,15,63,255,1023,4095,16383,65535,262143,1048575,4194303,16777215,

%T 67108863,268435455,1073741823,4294967295,17179869183,68719476735,

%U 274877906943,1099511627775,4398046511103,17592186044415,70368744177663,281474976710655

%N Decimal representation of the n-th iteration of the "Rule 173" elementary cellular automaton starting with a single ON (black) cell.

%H Robert Price, <a href="/A267596/b267596.txt">Table of n, a(n) for n = 0..1000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>

%H Stephen Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>, Wolfram Media, 2002; p. 55.

%H <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>

%H <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>

%F Conjectures from _Colin Barker_, Jan 18 2016 and Apr 20 2019: (Start)

%F a(n) = 5*a(n-1)-4*a(n-2) for n>3.

%F G.f.: (1-3*x+9*x^2-4*x^3) / ((1-x)*(1-4*x)).

%F (End)

%F Empirical a(n) = 4^n - 1 for n>1. - _Colin Barker_, Nov 25 2016 and Apr 20 2019

%t rule=173; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) Table[FromDigits[catri[[k]],2],{k,1,rows}] (* Decimal Representation of Rows *)

%Y Cf. A267594, A267595.

%K nonn,easy

%O 0,2

%A _Robert Price_, Jan 18 2016