Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #7 Feb 05 2018 09:35:59
%S 7,49,322,2072,13216,83972,532840,3381860,21491464,136856180,
%T 873803848,5596638788,35973158152,232118471828,1503949949896,
%U 9786663686756,63969334316680,420026972347316,2770499256109384,18356852895660164
%N Number of length-n 0..6 arrays with no following elements larger than the first repeated value.
%C Column 6 of A267471.
%H R. H. Hardin, <a href="/A267469/b267469.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 34*a(n-1) -490*a(n-2) +3892*a(n-3) -18529*a(n-4) +53746*a(n-5) -91860*a(n-6) +83448*a(n-7) -30240*a(n-8).
%F Conjectures from _Colin Barker_, Feb 05 2018: (Start)
%F G.f.: x*(7 - 189*x + 2086*x^2 - 12110*x^3 + 39543*x^4 - 71617*x^5 + 65212*x^6 - 22212*x^7) / ((1 - x)*(1 - 2*x)*(1 - 3*x)*(1 - 4*x)*(1 - 5*x)*(1 - 6*x)^2*(1 - 7*x)).
%F a(n) = (-504 - 315*2^n - 280*3^n - 315*4^n - 504*5^n + 3409*6^n + 360*7^n + 35*2^(1+n)*3^n*n) / 2520.
%F (End)
%e Some solutions for n=6:
%e ..3....1....4....3....6....2....5....4....5....1....4....3....6....4....3....2
%e ..6....5....2....5....0....6....2....2....3....6....5....0....2....6....0....4
%e ..3....2....5....6....5....0....5....0....6....6....6....3....4....1....4....1
%e ..5....5....4....4....6....6....1....6....6....3....0....5....4....0....6....5
%e ..2....3....5....2....0....6....3....6....3....0....2....4....2....6....1....5
%e ..5....0....0....3....3....6....6....5....0....5....1....0....1....1....2....1
%Y Cf. A267471.
%K nonn
%O 1,1
%A _R. H. Hardin_, Jan 15 2016