login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Decimal representation of the n-th iteration of the "Rule 133" elementary cellular automaton starting with a single ON (black) cell.
2

%I #26 Jul 06 2023 13:18:07

%S 1,2,4,8,84,168,1364,2728,21844,43688,349524,699048,5592404,11184808,

%T 89478484,178956968,1431655764,2863311528,22906492244,45812984488,

%U 366503875924,733007751848,5864062014804,11728124029608,93824992236884,187649984473768

%N Decimal representation of the n-th iteration of the "Rule 133" elementary cellular automaton starting with a single ON (black) cell.

%H Robert Price, <a href="/A267457/b267457.txt">Table of n, a(n) for n = 0..1000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>

%H Stephen Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>, Wolfram Media, 2002; p. 55.

%H <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>

%H <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>

%F Conjectures from _Colin Barker_, Jan 15 2016 and Apr 19 2019: (Start)

%F a(n) = 17*a(n-2)-16*a(n-4) for n>5.

%F G.f.: (1+2*x)*(1-13*x^2+32*x^4) / ((1-x)*(1+x)*(1-4*x)*(1+4*x)).

%F (End)

%t rule=133; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) Table[FromDigits[catri[[k]],2],{k,1,rows}] (* Decimal Representation of Rows *)

%Y Cf. A267423, A267456.

%K nonn,easy

%O 0,2

%A _Robert Price_, Jan 15 2016

%E Removed an unjustified claim that _Colin Barker_'s conjectures are correct. Removed a program based on a conjecture. - _Michael De Vlieger_, Jun 13 2022