Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #14 Apr 19 2019 12:06:17
%S 1,1,2,2,4,3,6,5,6,7,9,7,10,10,11,11,13,12,15,14,15,16,18,16,19,19,20,
%T 20,22,21,24,23,24,25,27,25,28,28,29,29,31,30,33,32,33,34,36,34,37,37,
%U 38,38,40,39,42,41,42,43,45,43,46,46,47,47,49,48,51,50
%N Number of ON (black) cells in the n-th iteration of the "Rule 131" elementary cellular automaton starting with a single ON (black) cell.
%D S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
%H Robert Price, <a href="/A267451/b267451.txt">Table of n, a(n) for n = 0..1000</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>
%H S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>
%H <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%H <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>
%F Conjectures from _Colin Barker_, Jan 15 2016 and Apr 19 2019: (Start)
%F a(n) = a(n-3)+a(n-4)-a(n-7) for n>6.
%F G.f.: (1+x+2*x^2+x^3+2*x^4+2*x^6) / ((1-x)^2*(1+x)*(1+x^2)*(1+x+x^2)).
%F (End)
%t rule=131; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) Table[Total[catri[[k]]],{k,1,rows}] (* Number of Black cells in stage n *)
%Y Cf. A267418.
%K nonn
%O 0,3
%A _Robert Price_, Jan 15 2016