

A267417


Triangle read by rows giving successive states of cellular automaton generated by "Rule 129" initiated with a single ON (black) cell.


10



1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0


COMMENTS

Row n has length 2n+1.
This sequence is also generated by Rule 161.


REFERENCES

S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.


LINKS

Robert Price, Table of n, a(n) for n = 0..10000
Eric Weisstein's World of Mathematics, Elementary Cellular Automaton
S. Wolfram, A New Kind of Science
Index entries for sequences related to cellular automata
Index to Elementary Cellular Automata


EXAMPLE

The first ten rows:
1
0 0 0
0 0 1 0 0
0 0 0 0 0 0 0
0 0 1 1 1 1 1 0 0
0 0 0 0 1 1 1 0 0 0 0
0 0 1 1 0 0 1 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0


MATHEMATICA

rule=129; rows=20; ca=CellularAutomaton[rule, {{1}, 0}, rows1, {All, All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]], {rowsk+1, rows+k1}], {k, 1, rows}]; (* Truncated list of each row *) Flatten[catri] (* Triangle Representation of CA *)


CROSSREFS

Sequence in context: A015269 A016347 A015989 * A014189 A319691 A079979
Adjacent sequences: A267414 A267415 A267416 * A267418 A267419 A267420


KEYWORD

nonn,tabf,easy


AUTHOR

Robert Price, Jan 14 2016


STATUS

approved



