Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Jan 18 2016 21:50:56
%S 1,0,3,7,4,3,9,3,6,6,0,2,7,5,0,6,6,1,4,8,7,3,9,0,2,0,6,5,5,9,8,7,3,1,
%T 5,0,1,4,0,3,2,2,5,9,6,0,2,4,6,3,2,0,1,2,8,3,9,3,5,6,3,2,2,7,8,0,0,3,
%U 0,6,7,5,8,7,6,1,3,8,7,5,1,0,0,7
%N Decimal expansion of the constant describing the expected number of components in a random labeled planar graph on n vertices.
%H Gheorghe Coserea, <a href="/A267412/b267412.txt">Table of n, a(n) for n = 1..51002</a>
%H Omer Gimenez, Marc Noy, <a href="http://dx.doi.org/10.1090/S0894-0347-08-00624-3">Asymptotic enumeration and limit laws of planar graphs</a>, J. Amer. Math. Soc. 22 (2009), 309-329.
%F Equals lim E[Xn], where Xn is the number of components in a random labeled planar graph with n vertices.
%F Equals 1 + C0(A266389), where function t->C0(t) is defined in the PARI code.
%e 1.0374393660275...
%o (PARI)
%o A266389= 0.6263716633;
%o Xi(t) = (1+3*t) * (1-t)^3 / ((16*t^3));
%o B01(t) = (3*t-1)^2 * (1+t)^6 * log(1+t)/(512*t^6);
%o B02(t) = (3*t^4 - 16*t^3 + 6*t^2 - 1) * log(1 + 3*t) / (32*t^3);
%o B03(t) = (1+3*t)^2 * (1-t)^6 * log(1+2*t) / (1024*t^6);
%o B04(t) = (1/4)*log(3+t) - (1/2)*log(t) - (3/8)*log(16);
%o B05(t) = (217*t^6 + 920*t^5 + 972*t^4 + 1436*t^3 + 205*t^2 - 172*t + 6);
%o B06(t) = (1-t)^2 / (2048 * t^4 * (1+3*t) * (3+t));
%o B0(t) = B01(t) - B02(t) - B03(t) + B04(t) - B05(t) * B06(t);
%o B21(t) = (1-t)^3 * (3*t-1) * (1+3*t) * (1+t)^3 * log(1+t) / (256*t^6);
%o B22(t) = (1-t)^3 * (1+3*t) * log(1+3*t) / (32*t^3);
%o B23(t) = (1+3*t)^2 * (1-t)^6 * log(1+2*t) / (512*t^6);
%o B24(t) = (1-t)^4 * (185*t^4 + 698*t^3 - 217*t^2 - 160*t + 6);
%o B25(t) = 1024 * t^4 * (1+3*t) * (3+t);
%o B2(t) = B21(t) - B22(t) + B23(t) + B24(t) / B25(t);
%o C0(t) = Xi(t) + B0(t) + B2(t);
%o 1 + C0(A266389)
%Y Cf. A266389, A266390, A267409, A267410.
%K nonn,cons
%O 1,3
%A _Gheorghe Coserea_, Jan 14 2016