login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of the Dirichlet eta function at 4.
15

%I #30 Sep 08 2022 08:46:15

%S 9,4,7,0,3,2,8,2,9,4,9,7,2,4,5,9,1,7,5,7,6,5,0,3,2,3,4,4,7,3,5,2,1,9,

%T 1,4,9,2,7,9,0,7,0,8,2,9,2,8,8,8,6,0,4,4,2,2,2,6,0,4,1,8,8,5,1,3,6,0,

%U 5,5,3,9,1,6,3,5,9,7,7,4,0,7,3,7,2,9,5,9,3,1,4,4,8,9,8,7,4,2,7,5,7,8,8,6,6,9,6,2,1,6,9,5,3,7,3,9,9,6,1,2

%N Decimal expansion of the Dirichlet eta function at 4.

%H OEIS Wiki, <a href="https://oeis.org/wiki/Zeta_functions#Euler.27s_alternating_zeta_function">Euler's alternating zeta function</a>.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/DirichletEtaFunction.html">Dirichlet Eta Function</a>.

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Dirichlet_eta_function">Dirichlet Eta Function</a>.

%F eta(4) = Sum_{k > 0} (-1)^(k+1)/k^4 = (7*Pi^4)/720.

%F eta(4) = Lim_{n -> infinity} A120296(n)/A334585(n) = (7/8)*A013662. - _Petros Hadjicostas_, May 07 2020

%e eta(4) = 1/1^4 - 1/2^4 + 1/3^4 - 1/4^4 + 1/5^4 - 1/6^4 + ... = 0.9470328294972459175765032344735219149279070829288860...

%t RealDigits[(7 Pi^4)/720, 10, 120][[1]]

%o (PARI) 7*Pi^4/720 \\ _Michel Marcus_, Feb 01 2016

%o (Magma) pi:= 7*Pi(RealField(110))^4 / 720; Reverse(Intseq(Floor(10^100*pi))); // _Vincenzo Librandi_, Feb 04 2016

%o (Sage) s = RLF(0); s

%o RealField(110)(s)

%o for i in range(1,10000): s += -((-1)^i/((i)^4))

%o print(s) # _Terry D. Grant_, Aug 04 2016

%Y Cf. A002162, A013662, A072691, A120296, A197070, A334585.

%K nonn,cons

%O 0,1

%A _Ilya Gutkovskiy_, Jan 13 2016