login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A267273
Binary representation of the n-th iteration of the "Rule 117" elementary cellular automaton starting with a single ON (black) cell.
2
1, 11, 11000, 11111, 110000000, 111111111, 1100000000000, 1111111111111, 11000000000000000, 11111111111111111, 110000000000000000000, 111111111111111111111, 1100000000000000000000000, 1111111111111111111111111, 11000000000000000000000000000
OFFSET
0,2
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
FORMULA
Conjectures from Colin Barker, Jan 14 2016 and Apr 19 2019: (Start)
a(n) = 10001*a(n-2)-10000*a(n-4) for n>5.
G.f.: (1+11*x+999*x^2-98900*x^3-1000*x^4+100000*x^5) / ((1-x)*(1+x)*(1-100*x)*(1+100*x)).
(End)
a(n) = A266983(n), n>1. - R. J. Mathar, Jan 17 2016
MATHEMATICA
rule=117; rows=20; ca=CellularAutomaton[rule, {{1}, 0}, rows-1, {All, All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]], {rows-k+1, rows+k-1}], {k, 1, rows}]; (* Truncated list of each row *) Table[FromDigits[catri[[k]]], {k, 1, rows}] (* Binary Representation of Rows *)
CROSSREFS
Sequence in context: A083442 A114120 A118557 * A138713 A267923 A068223
KEYWORD
nonn
AUTHOR
Robert Price, Jan 12 2016
EXTENSIONS
Removed an unjustified claim that Colin Barker's conjectures are correct. Removed a program based on a conjecture. - Michael De Vlieger, Jun 13 2022
STATUS
approved