login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A267262
Total number of OFF (white) cells after n iterations of the "Rule 111" elementary cellular automaton starting with a single ON (black) cell.
1
0, 1, 3, 5, 9, 13, 20, 24, 35, 39, 54, 58, 77, 81, 104, 108, 135, 139, 170, 174, 209, 213, 252, 256, 299, 303, 350, 354, 405, 409, 464, 468, 527, 531, 594, 598, 665, 669, 740, 744, 819, 823, 902, 906, 989, 993, 1080, 1084, 1175, 1179, 1274, 1278, 1377, 1381
OFFSET
0,3
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
FORMULA
Conjectures from Colin Barker, Jan 14 2016: (Start)
a(n) = (n^2+(-1)^n*(n-4)+2)/2 for n>3.
a(n) = a(n-1)+2*a(n-2)-2*a(n-3)-a(n-4)+a(n-5) for n>8.
G.f.: x*(1+2*x+x^4+x^5-2*x^6+x^7) / ((1-x)^3*(1+x)^2).
(End)
MATHEMATICA
rule=111; rows=20; ca=CellularAutomaton[rule, {{1}, 0}, rows-1, {All, All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]], {rows-k+1, rows+k-1}], {k, 1, rows}]; (* Truncated list of each row *) nbc=Table[Total[catri[[k]]], {k, 1, rows}]; (* Number of Black cells in stage n *) nwc=Table[Length[catri[[k]]]-nbc[[k]], {k, 1, rows}]; (* Number of White cells in stage n *) Table[Total[Take[nwc, k]], {k, 1, rows}] (* Number of White cells through stage n *)
CROSSREFS
Cf. A267253.
Sequence in context: A248956 A108754 A033499 * A106607 A305082 A007042
KEYWORD
nonn
AUTHOR
Robert Price, Jan 12 2016
STATUS
approved