login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A267163 T(n,k)=Number of nXk arrays containing k copies of 0..n-1 with no element 1 greater than its west, southwest or northwest neighbor modulo n and the upper left element equal to 0. 5

%I

%S 1,1,1,1,0,2,1,0,0,6,1,0,1,8,24,1,0,15,260,411,120,1,0,65,5826,68482,

%T 30362,720,1,0,202,66670,8718817,41883832,2742512,5040,1,0,537,

%U 1168252,1305588167,64580898272,47453493386,317221226,40320,1,0,1559,31032592

%N T(n,k)=Number of nXk arrays containing k copies of 0..n-1 with no element 1 greater than its west, southwest or northwest neighbor modulo n and the upper left element equal to 0.

%C Table starts

%C .....1.........1...........1...........1..........1............1........1....1

%C .....1.........0...........0...........0..........0............0........0....0

%C .....2.........0...........1..........15.........65..........202......537.1559

%C .....6.........8.........260........5826......66670......1168252.31032592

%C ....24.......411.......68482.....8718817.1305588167.272693813849

%C ...120.....30362....41883832.64580898272

%C ...720...2742512.47453493386

%C ..5040.317221226

%C .40320

%H R. H. Hardin, <a href="/A267163/b267163.txt">Table of n, a(n) for n = 1..50</a>

%e Some solutions for n=4 k=4

%e ..0..2..1..3....0..3..2..1....0..3..2..2....0..2..0..2....0..2..2..0

%e ..3..2..1..0....0..3..2..1....1..3..3..1....2..0..0..2....3..2..2..1

%e ..3..1..0..3....1..0..3..1....1..0..3..2....1..1..3..3....3..3..1..0

%e ..2..1..0..2....2..0..3..2....0..0..2..1....3..3..1..1....1..3..1..0

%Y Column 1 is A000142(n-1).

%K nonn,tabl

%O 1,6

%A _R. H. Hardin_, Jan 11 2016

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 20 20:15 EDT 2022. Contains 353876 sequences. (Running on oeis4.)