login
Number of ON (black) cells in the n-th iteration of the "Rule 105" elementary cellular automaton starting with a single ON (black) cell.
1

%I #7 Jan 12 2016 00:05:06

%S 1,0,3,2,3,2,5,4,3,10,9,8,5,12,11,10,3,26,9,24,9,16,15,14,5,36,15,30,

%T 11,26,21,20,3,58,9,56,9,48,15,46,9,56,27,42,15,46,33,32,5,84,15,78,

%U 15,62,25,56,11,82,33,64,21,60,43,42,3,122,9,120,9,112

%N Number of ON (black) cells in the n-th iteration of the "Rule 105" elementary cellular automaton starting with a single ON (black) cell.

%D S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.

%H Robert Price, <a href="/A267148/b267148.txt">Table of n, a(n) for n = 0..1000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>

%H S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>

%H <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>

%H <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>

%t rule=105; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) Table[Total[catri[[k]]],{k,1,rows}] (* Number of Black cells in stage n *)

%Y Cf. A267145.

%K nonn,easy

%O 0,3

%A _Robert Price_, Jan 11 2016