login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A267091
Primes p such that p*(2^k)+1 is also prime, where 2^k is the largest power of 2 smaller than p.
0
2, 3, 7, 11, 53, 59, 67, 73, 109, 149, 167, 239, 277, 307, 331, 421, 433, 457, 463, 487, 563, 593, 599, 683, 719, 743, 809, 821, 929, 971, 983, 1013, 1069, 1087, 1117, 1129, 1303, 1399, 1453, 1567, 1579, 1597, 1609, 1987, 2087, 2111, 2129, 2141, 2267, 2339, 2477
OFFSET
1,1
COMMENTS
The corresponding primes are 3, 7, 29, 89, 1697, 1889, 4289, 4673, 6977, 19073, 21377, 30593, 70913, 78593, 84737, 107777, 110849, 116993, 118529, 124673, 288257, 303617, 306689, 349697, 368129, 380417, 414209, 420353, 475649, 497153, 503297, ...
EXAMPLE
3*(2^1)+1=7(is prime) => p=3, (2^k)=2; (2^k)<p; 2<3.
11*(2^3)+1=89(is prime) => p=11, (2^k)=8; (2^k)<p; 8<11.
73*(2^6)+1=4673(is prime) => p=73, (2^k)=64; (2^k)<p; 64<73.
MATHEMATICA
Select[Prime@ Range@ 400, PrimeQ[# 2^IntegerPart@ Log2@ # + 1] &] (* Michael De Vlieger, Jan 11 2016 *)
CROSSREFS
Sequence in context: A106125 A175171 A073609 * A053781 A066749 A306786
KEYWORD
nonn
AUTHOR
Emre APARI, Jan 10 2016
STATUS
approved