login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Coefficient of x^4 in the minimal polynomial of the continued fraction [1^n,2^(1/3),1,1,...], where 1^n means n ones.
7

%I #10 Mar 07 2018 18:45:03

%S 0,6,456,6240,131238,2238780,41011296,730283034,13143304440,

%T 235581102912,4229156006790,75876624195564,1361636473680576,

%U 24432987781993530,438436202143461288,7867390833380267040,141174789462751501926,2533277512666920359964

%N Coefficient of x^4 in the minimal polynomial of the continued fraction [1^n,2^(1/3),1,1,...], where 1^n means n ones.

%C See A265762 for a guide to related sequences.

%H Andrew Howroyd, <a href="/A267082/b267082.txt">Table of n, a(n) for n = 0..200</a>

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (14, 90, -350, 90, 14, -1).

%F a(n) = 13*a(n-1) + 104*a(n-2) - 260*a(n-3) - 260*a(n-4) + 104*a(n-5) + 13*a(n-6) - a(n-7) for n > 8.

%F G.f.: (6 (x + 62 x^2 - 114 x^3 + 823 x^4 - 182 x^5 - 28 x^6 + 2 x^7))/(1 - 14 x - 90 x^2 + 350 x^3 - 90 x^4 - 14 x^5 + x^6).

%F From _Andrew Howroyd_, Mar 07 2018: (Start)

%F a(n) = 14*a(n-1) + 90*a(n-2) - 350*a(n-3) + 90*a(n-4) + 14*a(n-5) - a(n-6) for n > 7.

%F G.f.: 6*x*(1 + 62*x - 114*x^2 + 823*x^3 - 182*x^4 - 28*x^5 + 2*x^6)/((1 - 3*x + x^2)*(1 + 7*x + x^2)*(1 - 18*x + x^2)).

%F (End)

%e Let u = 2^(1/3), and let p(n,x) be the minimal polynomial of the number given by the n-th continued fraction:

%e [u,1,1,1,...] has p(0,x) = -5 - 15 x - 6 x^2 - 9 x^3 + 3 x^5 + x^6, so that a(0) = 0.

%e [1,u,1,1,1,...] has p(1,x) = -11 + 45 x - 66 x^2 + 35 x^3 + 6 x^4 - 15 x^5 + 5 x^6, so that a(1) = 6;

%e [1,1,u,1,1,1...] has p(2,x) = 131 - 633 x + 1110 x^2 - 969 x^3 + 456 x^4 - 111 x^5 + 11 x^6, so that a(2) = 456.

%t u[n_] := Table[1, {k, 1, n}]; t[n_] := Join[u[n], {2^(1/3)}, {{1}}];

%t f[n_] := FromContinuedFraction[t[n]];

%t t = Table[MinimalPolynomial[f[n], x], {n, 0, 30}]

%t Coefficient[t, x, 0]; (* A267078 *)

%t Coefficient[t, x, 1]; (* A267079 *)

%t Coefficient[t, x, 2]; (* A267080 *)

%t Coefficient[t, x, 3]; (* A267081 *)

%t Coefficient[t, x, 4]; (* A267082 *)

%t Coefficient[t, x, 5]; (* A267083 *)

%t Coefficient[t, x, 6]; (* A266527 *)

%o (PARI) concat([0], 6*Vec((1 + 62*x - 114*x^2 + 823*x^3 - 182*x^4 - 28*x^5 + 2*x^6)/((1 - 3*x + x^2)*(1 + 7*x + x^2)*(1 - 18*x + x^2)) + O(x^30))) \\ _Andrew Howroyd_, Mar 07 2018

%Y Cf. A265762, A267078, A267079, A267080, A267081, A267083, A266527.

%K nonn,easy

%O 0,2

%A _Clark Kimberling_, Jan 11 2016