login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Binary representation of the n-th iteration of the "Rule 93" elementary cellular automaton starting with a single ON (black) cell.
2

%I #21 Jun 13 2022 14:51:21

%S 1,11,10100,101111,101010000,1010111111,1010101000000,10101011111111,

%T 10101010100000000,101010101111111111,101010101010000000000,

%U 1010101010111111111111,1010101010101000000000000,10101010101011111111111111,10101010101010100000000000000

%N Binary representation of the n-th iteration of the "Rule 93" elementary cellular automaton starting with a single ON (black) cell.

%D S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.

%H Robert Price, <a href="/A267054/b267054.txt">Table of n, a(n) for n = 0..1000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>

%H S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>

%H <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>

%H <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>

%F Conjectures from _Colin Barker_, Jan 10 2016 and Apr 19 2019: (Start)

%F a(n) = 10101*a(n-2)-1010100*a(n-4)+1000000*a(n-6) for n>5.

%F G.f.: (1+11*x-x^2-10000*x^3-100000*x^5) / ((1-x)*(1+x)*(1-10*x)*(1+10*x)*(1-100*x)*(1+100*x)).

%F (End)

%t rule=93; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) Table[FromDigits[catri[[k]]],{k,1,rows}] (* Binary Representation of Rows *)

%Y Cf. A267053, A267055.

%K nonn,easy

%O 0,2

%A _Robert Price_, Jan 09 2016

%E Removed an unjustified claim that _Colin Barker_'s conjectures are correct. Removed a program based on a conjecture. - _Michael De Vlieger_, Jun 13 2022