login
A267047
Total number of ON (black) cells after n iterations of the "Rule 91" elementary cellular automaton starting with a single ON (black) cell.
1
1, 3, 5, 9, 14, 22, 27, 39, 44, 60, 65, 85, 90, 114, 119, 147, 152, 184, 189, 225, 230, 270, 275, 319, 324, 372, 377, 429, 434, 490, 495, 555, 560, 624, 629, 697, 702, 774, 779, 855, 860, 940, 945, 1029, 1034, 1122, 1127, 1219, 1224, 1320, 1325, 1425, 1430
OFFSET
0,2
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
FORMULA
Conjectures from Colin Barker, Jan 10 2016 and Apr 19 2019: (Start)
a(n) = (n^2+4*n-(-1)^n*(n-3)-3)/2 for n>1.
a(n) = a(n-1)+2*a(n-2)-2*a(n-3)-a(n-4)+a(n-5) for n>6.
G.f.: (1+2*x+2*x^4+2*x^5-3*x^6) / ((1-x)^3*(1+x)^2).
(End)
MATHEMATICA
rule=91; rows=20; ca=CellularAutomaton[rule, {{1}, 0}, rows-1, {All, All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]], {rows-k+1, rows+k-1}], {k, 1, rows}]; (* Truncated list of each row *) nbc=Table[Total[catri[[k]]], {k, 1, rows}]; (* Number of Black cells in stage n *) Table[Total[Take[nbc, k]], {k, 1, rows}] (* Number of Black cells through stage n *)
CROSSREFS
Cf. A267015.
Sequence in context: A053618 A268345 A357388 * A032801 A332641 A033818
KEYWORD
nonn,easy
AUTHOR
Robert Price, Jan 09 2016
STATUS
approved