login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A267047
Total number of ON (black) cells after n iterations of the "Rule 91" elementary cellular automaton starting with a single ON (black) cell.
1
1, 3, 5, 9, 14, 22, 27, 39, 44, 60, 65, 85, 90, 114, 119, 147, 152, 184, 189, 225, 230, 270, 275, 319, 324, 372, 377, 429, 434, 490, 495, 555, 560, 624, 629, 697, 702, 774, 779, 855, 860, 940, 945, 1029, 1034, 1122, 1127, 1219, 1224, 1320, 1325, 1425, 1430
OFFSET
0,2
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
FORMULA
Conjectures from Colin Barker, Jan 10 2016 and Apr 19 2019: (Start)
a(n) = (n^2+4*n-(-1)^n*(n-3)-3)/2 for n>1.
a(n) = a(n-1)+2*a(n-2)-2*a(n-3)-a(n-4)+a(n-5) for n>6.
G.f.: (1+2*x+2*x^4+2*x^5-3*x^6) / ((1-x)^3*(1+x)^2).
(End)
MATHEMATICA
rule=91; rows=20; ca=CellularAutomaton[rule, {{1}, 0}, rows-1, {All, All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]], {rows-k+1, rows+k-1}], {k, 1, rows}]; (* Truncated list of each row *) nbc=Table[Total[catri[[k]]], {k, 1, rows}]; (* Number of Black cells in stage n *) Table[Total[Take[nbc, k]], {k, 1, rows}] (* Number of Black cells through stage n *)
CROSSREFS
Cf. A267015.
Sequence in context: A053618 A268345 A357388 * A032801 A332641 A033818
KEYWORD
nonn,easy
AUTHOR
Robert Price, Jan 09 2016
STATUS
approved