Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Mar 23 2016 09:12:45
%S 1,0,0,1,1,1,0,0,0,0,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,
%T 1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,
%U 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1
%N Triangle read by rows giving successive states of cellular automaton generated by "Rule 81" initiated with a single ON (black) cell.
%C Row n has length 2n+1.
%C This sequence is also generated by rule 113.
%D S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
%H Robert Price, <a href="/A266982/b266982.txt">Table of n, a(n) for n = 0..10000</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>
%H S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>
%H <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%H <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>
%F Conjecture: a(0)=1; for n>0, a(n) = ( Sum_{i=1..n-2} floor((n-2)/i) ) mod 2. - _Wesley Ivan Hurt_, Mar 22 2016
%e The first ten rows:
%e 1
%e 0 0 1
%e 1 1 0 0 0
%e 0 0 1 1 1 1 1
%e 1 1 0 0 0 0 0 0 0
%e 0 0 1 1 1 1 1 1 1 1 1
%e 1 1 0 0 0 0 0 0 0 0 0 0 0
%e 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
%e 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
%e 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
%t rule=81; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) Flatten[catri] (* Triangle Representation of CA *)
%K nonn,tabf,easy
%O 0
%A _Robert Price_, Jan 07 2016