login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A266980
Decimal representation of the n-th iteration of the "Rule 79" elementary cellular automaton starting with a single ON (black) cell.
2
1, 6, 5, 122, 21, 2026, 85, 32682, 341, 523946, 1365, 8387242, 5461, 134212266, 21845, 2147461802, 87381, 34359650986, 349525, 549755464362, 1398101, 8796091624106, 5592405, 140737482762922, 22369621, 2251799791315626, 89478485, 36028796929485482, 357913941
OFFSET
0,2
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
FORMULA
Conjectures from Colin Barker, Jan 08 2016 and Apr 18 2019: (Start)
a(n) = 21*a(n-2)-84*a(n-4)+64*a(n-6) for n>5.
G.f.: (1+6*x-16*x^2-4*x^3-32*x^5) / ((1-x)*(1+x)*(1-2*x)*(1+2*x)*(1-4*x)*(1+4*x)).
(End)
MATHEMATICA
rule=79; rows=20; ca=CellularAutomaton[rule, {{1}, 0}, rows-1, {All, All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]], {rows-k+1, rows+k-1}], {k, 1, rows}]; (* Truncated list of each row *) Table[FromDigits[catri[[k]], 2], {k, 1, rows}] (* Decimal Representation of Rows *)
CROSSREFS
Sequence in context: A268000 A223529 A189422 * A130554 A291067 A037054
KEYWORD
nonn,easy
AUTHOR
Robert Price, Jan 07 2016
EXTENSIONS
Removed an unjustified claim that Colin Barker's conjectures are correct. Removed a program based on a conjecture. - Michael De Vlieger, Jun 13 2022
STATUS
approved