login
A266976
Decimal representation of the n-th iteration of the "Rule 78" elementary cellular automaton starting with a single ON (black) cell.
2
1, 6, 28, 104, 464, 1696, 7488, 27264, 120064, 436736, 1922048, 6989824, 30756864, 111845376, 492126208, 1789558784, 7874084864, 28633071616, 125985619968, 458129670144, 2015770968064, 7330076819456, 32252339683328, 117281237499904, 516037451710464
OFFSET
0,2
FORMULA
Conjectures from Colin Barker, Jan 08 2016 and Apr 18 2019: (Start)
a(n) = 2^(n-2)*((-2)^n+21*2^n-4)/3 = 2^(n-1)*A277954(n+1) for n>0.
a(n) = 2*a(n-1) + 16*a(n-2) - 32*a(n-3) for n>3.
G.f.: (1+4*x-16*x^3) / ((1-2*x)*(1-4*x)*(1+4*x)).
(End)
MATHEMATICA
rule=78; rows=20; ca=CellularAutomaton[rule, {{1}, 0}, rows-1, {All, All}]; (* start with single black cell *) catri=Table[Take[ca[[k]], {rows-k+1, rows+k-1}], {k, 1, rows}]; (* truncated list of each row *) Table[FromDigits[catri[[k]], 2], {k, 1, rows}] (* decimal representation of rows *)
CROSSREFS
Sequence in context: A011856 A276041 A134416 * A352739 A117999 A234617
KEYWORD
nonn,easy
AUTHOR
Robert Price, Jan 07 2016
EXTENSIONS
Removed an unjustified claim that Colin Barker's conjectures are correct. Removed a program based on a conjecture. - Michael De Vlieger, Jun 13 2022
STATUS
approved