login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Expansion of Product_{k>=1} 1 / (1 - 2*x^k)^2.
3

%I #11 Dec 13 2023 08:36:38

%S 1,4,16,52,160,452,1232,3204,8112,19956,48112,113732,264816,607876,

%T 1379264,3096372,6888784,15201156,33306752,72510916,156972960,

%U 338089844,724883552,1547816708,3292816416,6981664708,14758159472,31110217524,65415167744,137230388228

%N Expansion of Product_{k>=1} 1 / (1 - 2*x^k)^2.

%H Vaclav Kotesovec, <a href="/A266943/b266943.txt">Table of n, a(n) for n = 0..1000</a>

%F a(n) ~ c * n * 2^n, where c = 1/A048651^2 = 11.9906141505474711257730652493... .

%t nmax = 40; CoefficientList[Series[Product[1/(1-2*x^k)^2, {k, 1, nmax}], {x, 0, nmax}], x]

%Y Cf. A048651, A070933, A266944, A266945.

%K nonn

%O 0,2

%A _Vaclav Kotesovec_, Jan 06 2016