Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 May 16 2019 08:53:41
%S 25,96,296,568,625,696,776,1296,1616,3125,3251,4656,5625,5696,6128,
%T 6192,6576,7749,9776,17568,26241,34375,40625,47749,51469,51821,53125,
%U 56251,58307,59776,61376,65625,71296,71299,71301,71875,76481,86976,90625,99499,99501,109376
%N Consider a number x = concat(a,b). Sequence lists numbers x such that digits of b^a end in x.
%C 25: 5^2 = 25;
%C 96: 6^9 = 10077696 that ends in 96;
%C 296: 6^29 = 36845653286788892983296 that ends in 296;
%C 3125: 125^3 = 1953125 that ends in 3125.
%p with(numtheory): P:= proc(q) local a,b,c,d,k,n;
%p for n from 10 to q do d:=ilog10(n); for k from 1 to d do a:=(n mod 10^k)^trunc(n/10^k); b:=ilog10(a)+1;
%p if a mod 10^(d+1)=n then print(n); break; fi; od; od; end: P(10^6);
%t Select[Range@ 110000, AnyTrue[Function[n, FromDigits@ If[Length@ # < IntegerLength@ n, #, Take[#, -IntegerLength@ n]] &@ IntegerDigits[#2^#1] & @@@ Map[Function[k, Map[FromDigits, TakeDrop[#, k]]], Range[Length@ # - 1]] &@ IntegerDigits@ n]@ #, Function[m, m == #]] &] (* _Michael De Vlieger_, Jan 14 2016 *)
%Y Cf. A266817, A273382, A273383.
%K nonn,base
%O 1,1
%A _Paolo P. Lava_, Jan 04 2016