login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of words on {1,1,1,2,2,2,3,3,3,4,4,4,...,n,n,n} avoiding the pattern 123.
2

%I #22 Mar 17 2017 23:26:56

%S 1,1,20,374,8124,190893,4727788,121543500,3212914524,86782926068,

%T 2384725558736,66456350375566,1873703883228900,53351152389518550,

%U 1531960347453263112,44311785923563130392,1289909841595078198172,37760636720455988917420,1110927659386926734186992

%N Number of words on {1,1,1,2,2,2,3,3,3,4,4,4,...,n,n,n} avoiding the pattern 123.

%H Ferenc Balogh, <a href="http://arxiv.org/abs/1505.01389">A generalization of Gessel's generating function to enumerate words with double or triple occurrences in each letter and without increasing subsequences of a given length</a>, preprint arXiv:1505.01389 [math.CO], 2015.

%H Shalosh B. Ekhad and Doron Zeilberger, <a href="http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/sloane75.html">The Generating Functions Enumerating 12..d-Avoiding Words with r occurrences of each of 1,2, ..., n are D-finite for all d and all r</a>, 2014

%H Nathaniel Shar, <a href="https://pdfs.semanticscholar.org/98e3/71b675789ed6ec4f9c9cd82e2dee9ca79399.pdf">Experimental methods in permutation patterns and bijective proof</a>, PhD Dissertation, Mathematics Department, Rutgers University, May 2016.

%F Conjecture: a(n) = (2/Pi)*Integral_{t=0..1} sqrt((1 - t)/t)*(64*t^3 - 32*t^2)^n = Catalan(3*n)*2F1(-1-3*n,-n;1/2-3*n;1/2). - _Benedict W. J. Irwin_, Oct 05 2016

%Y Cf. A220097, A266734, A266735, A266737-A266741.

%K nonn

%O 0,3

%A _N. J. A. Sloane_, Jan 06 2016

%E More terms from _Alois P. Heinz_, Jan 14 2016